Gravity Wave–Fine Structure Interactions. Part I: Influences of Fine Structure Form and Orientation on Flow Evolution and Instability
نویسندگان
چکیده
Four idealized direct numerical simulations are performed to examine the dynamics arising from the superposition of a monochromatic gravity wave (GW) and sinusoidal linear and rotary fine structure in the velocity field. These simulations are motivated by the ubiquity of such multiscale superpositions throughout the atmosphere. Three simulations explore the effects of linear fine structure alignment along, orthogonal to, and at 458 to the plane of GW propagation. These reveal that fine structure alignment with the GW enables strong wave–wave interactions, strong deformations of the initial flow components, and rapid transitions to local instabilities and turbulence. Increasing departures of fine structure alignment from the GW yield increasingly less efficient wave–wave interactions and weaker or absent local instabilities. The simulation having rotary fine structure velocities yields wave–wave interactions that agree closely with the aligned linear fine structure case. Differences in the alignedGWfields are only seen following the onset of local instabilities, which are delayed by about 1–2 buoyancy periods for rotary fine structure compared to aligned, linear fine structure. In all cases, local instabilities and turbulence primarily accompany strong superposed shears or fluid ‘‘intrusions’’ within the rising, and least statically stable, phase of the GW. For rotary fine structure, local instabilities having preferred streamwise or spanwise orientations often arise independently, depending on the character of the larger-scale flow. Wave–wave interactions play the greatest role in reducing the initial GW amplitude whereas fine structure shears and intrusions are the major source of instability and turbulence energies.
منابع مشابه
STABILITY ANALYSIS FROM FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR TWO CAPILLARY GRAVITY WAVE PACKETS IN THE PRESENCE OF WIND OWING OVER WATER.
Asymptotically exact and nonlocal fourth order nonlinear evolution equations are derived for two coupled fourth order nonlinear evolution equations have been derived in deep water for two capillary-gravity wave packets propagating in the same direction in the presence of wind flowing over water.We have used a general method, based on Zakharov integral equation.On the basis of these evolution eq...
متن کاملEFFECT OF COUNTERPROPAGATING CAPILLARY GRAVITY WAVE PACKETS ON THIRD ORDER NONLINEAR EVOLUTION EQUATIONS IN THE PRESENCE OF WIND FLOWING OVER WATER
Asymptotically exact and nonlocal third order nonlinear evolution equations are derivedfor two counterpropagating surface capillary gravity wave packets in deep water in thepresence of wind flowing over water.From these evolution equations stability analysis ismade for a uniform standing surface capillary gravity wave trains for longitudinal perturbation. Instability condition is obtained and g...
متن کاملGravity wave breaking in two and three dimensions 2. Threedimensional evolution and instability structure
A companion paper by Andreassen et M. (this issue) introduced and used a nonlinear, compressible, spectral collocation code to address the relative evolutions of two-dimensionM motions obtained in twoand three-dimensionM simulations of gravity wave breaking. That study illustrated the effects of instability on the wave field and mean flow evolution and suggested that two-dimensionM models are u...
متن کاملStability analysis of concrete gravity basestructures in rocking motion under wave effect
Given the worldwide industry progress in the construction of massive concrete structures, it would be a good idea to use concrete gravity base structures (GBS).In this regard, better understanding of thesestructuresregardingtheiradvantages and disadvantages in offshore areas seems necessary.The present study employed MacCammy-Fuchs method, which is based on the size of the structure to the wave...
متن کاملFuzzy Logic Control of a Switched Reluctance Motor
Because of extreme local saturation at pole tips of excited phase and uncircular shape of rotor and stator, a Swithed Reluctance Motor (SRM) does not have a simple and accurate mathematical model. Therefore, the output control of this motor requires a robust controller which is not based on an accurate model of the process. Fuzzy controllers, to some extent, will satisfy these requirements. Tet...
متن کامل